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Absctract. Finding spatio-temporal disease clusters and pointing to their environmental drivers, even with
correlation sense, require sometimes sophisticated statistical and GIS methods manifested in a new branch of EE, namely
spatio-temporal epidemiology. Two key problems of spatio-temporal epidemiology is (1) selection of scale of analysis
for aggregated data and (2) choosing a method for spatio-temporal pattern identification. We advocate using of linear
correlation analysis and complete combinatorial analysis to determine possible spatial correlations between environmental
drivers and disease characteristics for solution of problem 1. We advocate using of ARIMA models for identification
of spatio-temporal patterns of dependencies disease characteristics by environmental driver (i.e. sets of spatial units at
a fixed time interval with significant statistically correlations) for solution of problem 2.

So, identification of spatio-temporal patterns for statistical associations between number of fires (NF) as environmental
driver and cancer incidence (CI) as disease characteristics using general approach and selection of best scale of analysis
for aggregated data were done for seven administrative units (AUs) of Far Eastern Federal District (FEFD) of Russia for
the period years 1992-2019. It was found that one fifth of AU-CI combinations has correlation between NF and CI. Three
blood cancers (leukemia, non-Hodgkin lymphoma, and Hodgkin lymphoma) had the strongest statistical associations
with wildfire. We also have seen two best scales of analysis of aggregated data; the first scale depicts typical type of forest

(20 % of FFED); the second scale depicts typical climate (75 % of FFED).
Keywords: Spatio-temporal ecological epidemiology, combinatorial linear correlation analysis, ARIMA models,

Russian Far East, fires, cancer.

1. Spatio-temporal epidemiology problems.
Environmental epidemiology (EE) is a discipline
which historically focuses particularly at disease
clusters [1]. Traditional questions “Who is ill, when
and where” in EE are oriented to finding a spatio-
temporal clusters for defined population groups and
some disease (type of diseases). The three questions
are combined with a question “Why?” or “What
is environmental (natural or man-made) driver for
the presence of certain spatio-temporal clusters?”
It is anticipated that finding a biologically explainable
causal relationship between environmental driver
and diseases can be quite unreachable. However,
even visible correlation relationship between
environmental driver and disease can be an
important signal for public health and environmental
managers, according to precautionary principle in
EE (when some driver is strongly suspected to cause
harm, one should not wait until a proof arrives, but
rather take an action).

Finding spatio-temporal disease clusters and
pointing to their environmental drivers, even with
correlation sense, require sometimes sophisticated
statistical and GIS methods [2] manifested in a new
branch of EE, namely spatio-temporal epidemiology
[3]. Two key problems of spatio-temporal
epidemiology is (1) selection of scale of analysis for
aggregated data and (2) choosing a method for spatio-
temporal pattern identification.

2. General problems in understanding dynamics
of environmental driver and response disease in EE.
Spatio-temporal  epidemiology uses localized
registries of disease incidence and/or disease mortality
for a wide spectrum of population groups (e.g. age
cohorts, age classes, gender, ethnicity etc.). These
localized time series of disease characteristics,
obtained for temporal analysis may be long or short,
and may have gaps. Very often the time series have
seasonality, or some other cyclic features and trends,
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although the trends cannot be simply explained by
biological, physical or any other natural reasons.
Thus, time series of disease incidence and/or disease
mortality hardly can be represented by stationary
stochastic approximations with constant moments
(e.g. mean and standard deviation) over time. On the
other hand, disease characteristics should have
some autoregressive features (i.e. their recent values
would depend on previous historic values because of
some natural reasons, like genetic, demographic or
(sometimes) registration methods). Accounting for
historical dependence of present values in the time
series from the past, we should assume that their
residual stochastic component should also be related
to previous values of residuals, but perhaps differently
weighted to describe some events which may influence
their values (e.g. changes in registration system, or
other). Potential environmental drivers of diseases,
either climatic or anthropogenic many of which
can be reasonably simulated, also have a stochastic
component. Interpreted as stochastic timeseries, values
of environmental drivers have often autoregressive
behavior due to their physical and/or chemical nature
and demonstrate non-stationarity related to change
in trends or seasonality or other reasons. Meanwhile,
time series of fixed diseases characteristics for
different spatial units may be correlated or not,
depending on size of the units. If spatial units are large
and not-connected by demographic processes (like
migration), it can be assumed that their time series,
representing disease characteristics, are independent.
Environmental drivers for large spatial units may be
also independent, if the units are not connected by
some joint ecological or physical processes. Moreover,
possible statistical relations between environmental
drivers and disease characteristics may be also seen
only at some certain spatial and temporal scales.

3. Mathematical formulation of selection of best
scale of analysis for aggregated data in EE. Let us
have Yﬁk (t) registered disease characteristics for the
time period t= [tyml,tyem] , where j — is an index
of spatial geographical unit j = [1: ], i - is an index
of population group i = [1 : m], k - is an index of an
analyzed disease k = [1 : n]. We also have a suspect
environmental driver X] (t) in each of spatial unit for
the same period.

How many spatial units should be taken for an analysis
to maximize strength of statistical relation between X] ()
and Yﬁk (t) and what are these units? Thus we need to find

Abest = Z vng:jS e Jz A(.]g)a

where A, is an area representing best scale, A(g) is an
area of spatial unit with an index g; s, u...z are indexes
of spatial units, which maximize a value of functional
reflecting strength of statistical relations

Ey = e, (X5, 03X, 5 (0))

forall i = [1:m] and k = [1 : n] over entire analysis
interval t = [tyml, tyem].

4. Mathematical formulation for spatio-temporal
pattern identification in EE. The generalized task
can be formulated as following: to find all statistical
functions (or models)

Ty =y s sin =i s Jy o sy =l K (XJg ()
Y, (0,

describing statistical dependence of diseases with
indexes d, e... f for population group with indexes a,
b...c inspatial units with indexes s, ... z from suspected
driver with a confidence interval o, preliminary set.
As a matter of fact, this task is usually done for each
of disease i and for each of population group k (i.e. for
one type of disease and for one population group in
sets of spatial units). Ideally, fulfilling of mentioned
generalized task will have intersection with task
of finding of the best spatial scale.

5. Suggested method for selection of best scale
of analysis for aggregated data in EE. Significant body
of analysis methods are designed in environmental
epidemiology to determine disease clusters and their
impacting environmental drivers. Detection of Spatial
Autocorrelation (SA) for neighboring areas, using
of Moran I spatial statistics or Getis-Ord Gi statistics,
spatial analysis learning machines etc. (see for example
review of [4]). Such GIS based correlation studies
can be complex and difficult to explain for public
health and environmental managers. We advocate
using of linear correlation analysis to determine
possible spatial correlations between environmental
drivers and disease characteristics. These correlations
donot explain casual relationships, but rather
give an information on strength and directions of
relationships between environmental drivers and
disease characteristics. In this approach the functional

F, =, X @Y (1), willbea maximum coefficient
g g g

of correlation
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max
J gy k

e

R‘]g =g JueJzin =l Jp g sk p=ky ke k y (XJq (t)’
7, (0)

between environmental driver X,g(t) for a set of
spatial units J, averaged over the time period [t

year1®

tyem] and disease characteristic Y]gihke (t) averaged
over the time period [t ¢, ] for a set of spatial
units J for set of population groups i, and for set of
diseases k. When analyzing a set of population groups
(i.e. all population in groups with numbers i, i,...i ),
or/and a set of diseases (i.e. all population in groups
with numbers k » ke... k) an average correlation for
the sets should be estimated. This can be done by
simple averaging, where average spatial correlation
for the sets i and kf, declared as the same sample,

R]g: ip; kf(X]g(t);Y]gihkf ®) is calculated as
1

R]gjih}ke = Ziw ip... ic de, ke..kf R]g n(ipmky)

the sum of spatial correlations for each particular
population group in the set i, and each particular
disease in the set k , divided by multiple of the
total number of elements in the set of population
groups n(i,) and in the set of diseases m(k ). It was
shown, however, that such a simple averaging of
correlations potentially may result in a bias of the
estimate of averaged correlation coeflicient. Using
recommendation of [5] we suggest using of alternate

method of averaging, when each R;  is first converted
1+R]g

to Fishers’ z: Z]g =0,5XIn
R,

9

, then all transformed
1-R),

can be averaged and the result back-converted to
exp )9 inikeq

Ry ik, = —2z———— It was demonstrated

gitnike = 2T giinike_y

by [5] that z-transformation greatly reduces bias

in averaging of correlations. The task of finding

maximum spatial correlation between environmental

driver and disease characteristics for all the

spatial units would be equivalent to calculation of
Ry i 1, (X, (t); Y} inks () for each possible

set J of combinations of spatial units with further
identification of a set providing maximum spatial correla-
tion. Number of calculations for fixed sets of population
groups i, and for set of diseases k will be equal to C', + C',
+...C l(l_ yt C ’1, where C " is a number of combinations
of m — spatial units from [ - total spatial units.

6. Suggested method for spatio-temporal pattern
identification in EE. Spatio-temporal pattern analysis

in EE is always based on time series analysis and
forecasting. Time series analysis appeared almost
hundred years ago as a branch of practical statistics,
but developed particularly wide in the last thirty
years [6]. Firstly, classical statistical models were
developed. Subsequently, exponential smoothing
techniques were suggested for refining time series
analysis. Now days auto-regressive moving average
models (ARIMA) are mostly applied. Some time
series analysis approaches incorporate now Machine
Learning.

We strongly advocate using of ARIMA models
with combinatorial aggregations for identification
of spatio-temporal patterns in EE. ARIMA models (h,
d, q) for time series A are combinations of a difference
autoregressive model with a moving average model
(6], which are expressed as:

A%y (1) = o+ a Ay (t-1) + A, Ay (t-2) +..+
+aAy(t-h) + e()+6 e(t-1)+
+0,e(t-2)+..+ Gge(t -q),
where A%y(t) is analyzed variable in time moment ¢,
differenced d times, €(l) are normally distributed
residuals in time moment! , a,...q,are the coeflicients
of the autoregressive (AR) part of the model, 6....
6 are the coeflicients of the moving average (MA)
part, and a, is a constant. In an ARIMA (h, d, q)
model the predictors (d differenced) are lagged
h data points for the autoregressive part and g
residuals are considered for the moving average
part. When the task is to make an identification
of spatio-temporal  patterns reflecting relations
of disease characteristics with a certain environmental
driver one need to minimize influence of different
regional co-factors of diseases by statistical analysis. We
suggest to make a normalization to a maximum value
in each of spatial units both for environmental driver

X, (¢) = —202
Jg maxX; () and for disease characteristic
Yjgik (©)

ngik (t) = W . Such anormalization

allows comparison of amplitudes, trends, number
of cycles and autoregressive features of time series
within spatial units or within sets of several spatial
units. Identification of spatio-temporal patterns in a
set of several spatial units assumes that one should
analyze time series for environmental driver and
disease characteristics, representative for the set. These
time series obtained by unification of time series for
spatial units from the set, which can be calculated in
two ways:
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1) by simple averaging of time series for each year:

Y€t gi(t)
Yset (t) e —

Nset

where g is the time series, representing either
environmental driver or disease characteristic for the
entire set, n_,is the number of spatial units in the set,
g, is the time series in the spatial unit 3;

2) by averaging with weighting to population
number in each spatial unit:

Nset .. )
Jset(t) = % )

where p(f), is a population number and g, is either disease
characteristic in spatial unit 7, or environmental driver
(if physical sense allows such averaging for the driver).

Kruskal - Wallis test with an a = 0,05 [7] should be
applied before unification of time series from different
spatial units in order to see if samples presenting
environmental driver and/or disease characteristics
from one spatial unit dominate similar samples from
another spatial unit (in this case samples are dependent
and one from the tested spatial units should be taken
out from further spatio-temporal analysis). The task
of spatio-temporal pattern identification in EE, after
defining of a rule for calculating of representative
time series for environmental driver and disease
characteristics for a set of aggregated spatial units,
can be formulated as following: to find all statistically
significant (usually with confidence interval o = 0,05
or a= 0,1) correlations for all spatial units and all
possible aggregations of the spatial units between
environmental driver (normalized) and disease
characteristics (normalized) and identify spatial units
in aggregations, which provide statistical associations,
ie. find all sets ]g with spatial units J, J .. J,
for which absolute value of correlation coefficient
for a set of population groups (i.e. all population
in groups with numbers i, i, ... i), or/and a set of
diseases (i.e. all population in groups with numbers
k; k, .. k) is larger than a fixed threshold r
(usually > 0,5) with certain confidence a (0,05 or 0,1):

abs[r]g = Js Ju-Jz ih = lq Upic ke =kKq,

ke..ks (X]g ); Y]gihke ()] > Fuin with p-value< a.
We suggest that one conduct the correlation
analysis for all combinatorial aggregations of spatial
units, which total number is equal to C' + C, + ...
CI(H) + C', where C" is a number of combinations
of m - spatial units from [ - total spatial units and with
two ways of unification of the time series within the
spatial units. We advocate using of ARIMA models

for identification of spatio-temporal patterns of

dependencies disease characteristics by environmental
driver (i.e. sets of spatial units at a fixed time interval
with significant statistically correlations). In this
approach environmental driver in a set of spatial units
is firstly approximated by ARIMA model, possibly
with backwards time lags, depicting memory in
diseases development. Disease characteristics in the
set are also approximated by ARIMA and afterwards
the predictor and the response variable are cross-
correlated. The Ljung-Box Q test [6] should be applied
to the residuals in ARIMA models to ensure that the
residuals series are white noise, which indicates the
goodness of the resulting fit. Holm - Bonferroni
method [8] with correcting (increasing) of p-value
should be applied to control family-wise error of
I type (accepting of false positive hypothesis on
existing of significant correlation) during multiple
calculations of ARIMA models. The final sets with
found cross-correlations between ARIMA described
environmental driver and disease characteristics are
ranked by the value of cross-correlation coefficients in
order to see spatio-temporal patterns with strongest
relations between the predictor and response function.

7. Case study: Cancer incidence and number
of fires in Far Eastern Federal District of Russia —
spatio-temporal patternidentification. Identification
of spatio-temporal patterns for statistical associations
between number of fires (NF) as environmental driver
and cancer incidence (CI) as disease characteristics
using general approach, described above (see 5),
was done for seven administrative units (AUs) of Far
Eastern Federal District (FEFD) of Russia (see [9]. We
started our study knowing that temporal dynamics of
cancer incidence was quite successfully described
by ARIMA models in different countries like USA,
Brazil, Switzerland [10] and relationship between
cancer and wildfires was found in Canada [11]. In our
study (see [9]) data on CI (persons with cancer for
100 000 persons) for five major cancer types in seven
listed AUs in two age groups (children and teenagers
0-14 years and the entire population) for the 28-year
period (1992-2019) were used. The algorithms
of spatio-temporal patterns identification in our
case study were realized in R language and using
Excel (calculation files can be send by request) and
both methods of unification of time series (simple
averaging and averaging with weighting to population
number) were applied. Approximately one fifth from
all possible sets were found to have cross-correlations
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between NF and CI. Three blood cancers (leukemia,
non-Hodgkin lymphoma, and Hodgkin lymphoma) had
the strongest statistical associations with wildfires [9].

8. Case study: Cancer incidence and number
of fires in Far Eastern Federal District of Russia —
selection of best scale of analysis for aggregated
data. We made a spatial analysis of geographical
coincidence between CI and NF for all sets of three to

seven possible combinations of AUs of FEFD for the
age population groups (children/teens 0-14 year and
entire population) in order to find best scale of analysis
of aggregated data. We found that distribution of
maximum spatial correlation coeflicient R? (averaged
for all five cancer types) over number of AUs
in a combination set has two peaks (see Fig. 1) for
both age population groups (children/teens 0-14 year
and entire population).

Maximum spatial correlation averged by five cancer types in Far
Eastern Federal District
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Fig. 1. Maximum spatial correlation coefficient R2 (averaged for all five cancer types) over number of administrative units

The first peak is observed for combination from
the three AUs Primorskij Kraj - Khabarovskij Kraj -
Amurskaja Oblast. Thus, the first possible best scale
of analysis is sum of areas for these administrative

¥

units (over 1314 000 km?, which is one fifth of the
entire area). These three AUs have similar forest types
(south taiga and temperate forests), which likely result
in a similar smoke pollution (see Fig. 2a).
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Fig. 2. a) Three aggregated administrative units, providing best spatial correlation between cancer incidence and number of fires,
are situated completely or partly to the south of border of southern taiga and temperate forest (white line) [12]; b) Five aggregated
administrative units, providing second-best spatial correlation between cancer incidence and number of fires, are situated completely to
the west of winter isobaric border 1016 millibar (white line), dividing territory with continental and marine climate [13]

Note. Far Eastern Federal District (FEFD) of Russian Federation in borders till the year 2018 (light grey) and administrative units
used in the case study: 1 - Primorskij Kraj; 2 - Khabarovskij Kraj; 3 - Amurskaja Oblast; 4 - Kamchatskij Kraj; 5 - Magadan Oblast;
6 — Sakhalin Oblast. Khabarovsk is the largest city of FEFD (1,6 million inhabitants) and capital of FEFD till the year 2018 (Map

of Russian Federation till the year 2018)
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Adding to this set Respublika Sakha (central
and northern taiga) decrease maximum R* Further
addition of Magadan Oblast to the set Primorskij
Kraj — Khabarovskij Kraj - Amurskaja Oblast’ -
Respublika Sakha, provides the second peak for
maximum R? distribution at a five AUs set. Thus, the
second possible best scale of analysis, which takes
three fourths of the entire area (over 4 800 000 km?).
Geographic area which includes Primorskij Kraj -
Khabarovskij Kraj - Amurskaja Oblast’ - Respublika
Sakha - Magadan Oblast’ has continental climate
with similar geostrophic pressure fields and
prevailing winds in all seasons (see Fig. 2b), thus
inducing homogeneity in distribution of smoke
pollution. Addition to the area with homogeneous
continental climate of AUs with maritime climate
(Kamchatskij Kraj and/or Sakhalin oblast moves
maximum R? to low values. Maximum R? for the
age group “children/teens 0-14 years” was always
smaller than maximum R2 for “entire population”
at all sets of administrative unit combinations (from
three to seven) (see Fig. 1).

9. Conclusion: What is learned from the case
study for methodology? We saw that there were to best
spatial scales for analysis of aggregated data. The first one
took near 20 % of the entire area, but we found almost
40 % of spatio-temporal statistical associations between
environmental driver and disease characteristics here
(11 from the total 29 statistical associations found by
ARIMA modelling), The second spatial scale constitutes
75 % of the entire area and got all the spatio-temporal
statistical associations. Thus, we speculate that there
is a trade-off in environmental epidemiology spatio-
temporal analysis between finding of maximum number
of spatio-temporal patterns at the best scale and finding
all the patterns at the second-best scale.

Our findings in spatial correlations analysis need
an EE process-oriented exposure modelling proof.
Indeed, maximum spatial correlation between CI and
NF in aggregated set “Primorskij Kraj - Khabarovskij
Kraj - Amurskaja Oblast” may be explained as by
carcinogenic features of smoke from burned southern
taiga and temperate forests, so by largest population
density in the entire Federal District here.

The study was supported from the Russian State Assignment of the Federal Research Centre of the Southern
Scientific Centre of the Russian Academy of Sciences (SSC RAS) (122013100131-9).
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KOMBUMHATOPHBIE ATPETAIIMM 1 MOJEJIb AHAJIM3A ARIMA
B 9KOJIOTMYECKOV TIPOCTPAHCTBEHHO-BPEMEHHOV IIMJIEMUOIOTUN
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2 Xabaposckuit pegepanbHblil HayuHbIl eHTp PAH, XabapoBck
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Annotanus. O6Hapy)XeHUe TIPOCTPAHCTBEHHO-BPEMEHHBIX K/IACTEPOB 3a00/IeBaHMII U MOUCK MX 9KOMOTMYECKMX
HIPUYNH, laXKe KOPPEIALMOHHBIX, MHOTAa TPEOYIOT CIIOXKHBIX cTaTUCTHdecKuX U [VIC-MeTO0B, 4TO MPOSBIIAETCA B 110-
SIBJICHMY HOBOJ OTPAC/IM 3KOJIOTMYECKOI SMNUEMUOIOTUY, & MMEHHO: IPOCTPAaHCTBEHHO-BPEMEHHOI 3KOJIOTMYECKOI
AMUIEMIOIOr NN, [IByMsI K/IIOUeBBIMU IPOO/IeMaMI TPOCTPAHCTBEHHO-BPEMEHHOI STIMIEMIIOTIOT MY SIB/LIIOTCS: 1) BBIOOD
Macurtaba aHajM3a arpernpoBaHHbIX JAHHBIX; 2) BBIOOP MEeTOfja BbIsB/ICHISI IIPOCTPAHCTBEHHO-BPEMEHHBIX 3aKOHOMep-
HOCTEI.

Jly1s1 onperienieHnst BOSMOXKHBIX IPOCTPAHCTBEHHBIX KOPPEJIALMIT MEXAY BCeMM 9KOMOTHUeCKMMY (PaKTOpaMu 1 Xa-
paKTepuCTUKaMy 3a60/IeBAHMIT U C LIeIbI0 pellleHus pobeMbl 1 peKOMEHI0BAHO UCIIOIb30BATh IMHEIHbIN KOppesis-
L[VIOHHBIIT aHA/IN3 U TIOHBII KOMOMHATOPHBII Iepe6op. [I/Is BbIABIEHMS IPOCTPAHCTBEHHO-BPEMEHHBIX 3aKOHOMEPHO-
creit (peuteHust mpo6meMsl 2) 1eecoo6pasHo 1Cronb3oBaTh Mogenu ARIMA ¢ KOMOMHATOPHBIMIY arperanusMi.

BbIsIB/IEHBI IPOCTPAHCTBEHHO-BPEMEHHBIE 3aKOHOMEPHOCT CTATUCTNYECKNUX CBsi3ell (Ipobiema 2) MeXXay Komude-
crBoM mtoxapoB (NF) kax akonorndyeckum daxropom u 3abomeBaemoctsio pakoM (CI) kak XapakTepucTukoi sabonesa-
HMA C ucHonb3oBaHueM mMofemt ARIMA 1 onpesenieH HayTy4Imii MacliTab aHaaM3a arperMpoBaHHBIX JAHHBIX (IIPO-
6rema 1). ViccnenoBaHie MpOBOAMIOCH /I ceMM agMUHUCTpaTuBHbIX efuunl (AE) [lampHeBOCTOYHOTO (enepanbHOro
okpyra (IB®O) Poccun 3a 28-netHuit mepuog (1992-2019 rr.).

BbIsB/IEHO, YTO IPUMEPHO OfjHA IATas U3 BCeX BO3SMOXKHbIX Hab0opoB AE-CI nMeeT B3aMHYI0 KOPPETIALIUIO MEXIY
NF u CI. Tpu Bupia paka KpoBH (JIefikeMusi, HeXOIKKMHCKas muMdoma u mumpoma X0oKKIHA) MMeTN CaMyI0 CUIbHYIO
CTAQTUCTUYECKYIO CBsI3b C JIECHBIMM HoKapamy. OOGHAPY>KEHO, UTO CYIIECTBYIOT [{Ba HAMTYYINNX NPOCTPAHCTBEHHBIX
Macurraba J/Is aHa/IM3a arpernpOBaHHBIX TaHHBIX: [IEPBbIil MACIITAb OTPa)KaeT THUII JOMUHAHTHOTO seca (20 % Tepputo-
pun IBDO), a BTOpoit — THII fOMUHAHTHOTO Knmarta (75 % teppuropun IBDO).

KiroueBble cmoBa: MpOCTPaHCTBEHHO-BPEeMEHHAst 9KOTIOrMYeCKast SINMAEeMUONOTHS, KOMOMHATOPHBII JIMHEIHbII
KOPPpeNAIMOHHbIN aHann3, Mofenu ARIMA, [lanbunit Boctok Poccun, noskapsl, pak.

Pa6oma evimonrena 6 pamxax I'3 FOHL] PAH (122013100131-9).
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