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Absctract. Finding spatio-temporal disease clusters and pointing to their environmental drivers, even with 
correlation sense, require sometimes sophisticated statistical and GIS methods manifested in a new branch of EE, namely 
spatio-temporal epidemiology. Two key problems of spatio-temporal epidemiology is (1) selection of scale of analysis 
for aggregated data and (2) choosing a method for spatio-temporal pattern identification. We advocate using of linear 
correlation analysis and complete combinatorial analysis to determine possible spatial correlations between environmental 
drivers and disease characteristics for solution of problem 1. We advocate using of ARIMA models for identification 
of spatio-temporal patterns of dependencies disease characteristics by environmental driver (i.e. sets of spatial units at 
a fixed time interval with significant statistically correlations) for solution of problem 2.

So, identification of spatio-temporal patterns for statistical associations between number of fires (NF) as environmental 
driver and cancer incidence (CI) as disease characteristics using general approach and selection of best scale of analysis 
for aggregated data were done for seven administrative units (AUs) of Far Eastern Federal District (FEFD) of Russia for 
the period years 1992–2019. It was found that one fifth of AU-CI combinations has correlation between NF and CI. Three 
blood cancers (leukemia, non-Hodgkin lymphoma, and Hodgkin lymphoma) had the strongest statistical associations 
with wildfire. We also have seen two best scales of analysis of aggregated data; the first scale depicts typical type of forest 
(20 % of FFED); the second scale depicts typical climate (75 % of FFED).

Keywords: Spatio-temporal ecological epidemiology, combinatorial linear correlation analysis, ARIMA models, 
Russian Far East, fires, cancer.

1. Spatio-temporal epidemiology problems. 
Environmental epidemiology (EE) is a discipline 
which historically focuses particularly at disease 
clusters [1]. Traditional questions “Who is ill, when 
and where” in EE are oriented to finding a spatio-
temporal clusters for defined population groups and 
some disease (type of diseases). The three questions 
are combined with a question “Why?” or “What 
is environmental (natural or man-made) driver for 
the presence of certain spatio-temporal clusters?” 
It is anticipated that finding a biologically explainable 
causal relationship between environmental driver 
and diseases can be quite unreachable. However, 
even visible correlation relationship between 
environmental driver and disease can be an 
important signal for public health and environmental 
managers, according to precautionary principle in 
EE (when some driver is strongly suspected to cause 
harm, one should not wait until a proof arrives, but 
rather take an action). 

Finding spatio-temporal disease clusters and 
pointing to their environmental drivers, even with 
correlation sense, require sometimes sophisticated 
statistical and GIS methods [2] manifested in a new 
branch of EE, namely spatio-temporal epidemiology 
[3]. Two key problems of spatio-temporal 
epidemiology is (1) selection of scale of analysis for 
aggregated data and (2) choosing a method for spatio-
temporal pattern identification.

2. General problems in understanding dynamics 
of environmental driver and response disease in EE. 
Spatio-temporal epidemiology uses localized 
registries of disease incidence and/or disease mortality 
for a wide spectrum of population groups (e.g. age 
cohorts, age classes, gender, ethnicity etc.). These 
localized time series of disease characteristics, 
obtained for temporal analysis may be long or short, 
and may have gaps. Very often the time series have 
seasonality, or some other cyclic features and trends, 
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although the trends cannot be simply explained by 
biological, physical or any other natural reasons. 
Thus, time series of disease incidence and/or disease 
mortality hardly can be represented by stationary 
stochastic approximations with constant moments 
(e.g. mean and standard deviation) over time. On the 
other hand, disease characteristics should have 
some autoregressive features (i.e. their recent values 
would depend on previous historic values because of 
some natural reasons, like genetic, demographic or 
(sometimes) registration methods). Accounting for 
historical dependence of present values in the time 
series from the past, we should assume that their 
residual stochastic component should also be related 
to previous values of residuals, but perhaps differently 
weighted to describe some events which may influence 
their values (e.g. changes in registration system, or 
other). Potential environmental drivers of diseases, 
either climatic or anthropogenic many of which 
can be reasonably simulated, also have a stochastic 
component. Interpreted as stochastic time series, values 
of environmental drivers have often autoregressive 
behavior due to their physical and/or chemical nature 
and demonstrate non-stationarity related to change 
in trends or seasonality or other reasons. Meanwhile, 
time series of fixed diseases characteristics for 
different spatial units may be correlated or not, 
depending on size of the units. If spatial units are large 
and not-connected by demographic processes (like 
migration), it can be assumed that their time series, 
representing disease characteristics, are independent. 
Environmental drivers for large spatial units may be 
also independent, if the units are not connected by 
some joint ecological or physical processes. Moreover, 
possible statistical relations between environmental 
drivers and disease characteristics may be also seen 
only at some certain spatial and temporal scales. 

3. Mathematical formulation of selection of  best 
scale of analysis for aggregated data in EE. Let us 
have Yjik (t) registered disease characteristics for the 
time period t = [tyear1,tyear2] , where j – is an index 
of spatial geographical unit j = [1 : l], i – is an index 
of population group i = [1 : m], k – is an index of an 
analyzed disease k = [1 : n]. We also have a suspect 
environmental driver Xj (t) in each of spatial unit for 
the same period.

How many spatial units should be taken for an analysis 
to maximize strength of statistical relation between Xj (t) 
and Yjik (t) and what are these units? Thus we need to find 

A A jbest J j j
w

j gg s u z, ... ( ),
 

where Abest is an area representing best scale, A(g) is an 
area of spatial unit with an index g; s, u…z are indexes 
of spatial units, which maximize a value of functional 
reflecting strength of statistical relations

 F X t Y tJ j j j J J iks u z g gg
= , ... ( ( ( ))

for all i = [1 : m] and k = [1 : n] over entire analysis 
interval t = [tyear1, tyear2].

4. Mathematical formulation for spatio-temporal 
pattern identification in EE. The generalized task 
can be formulated as following: to find all statistical 
functions (or models) 

, ... ; , ... ; ; ...

( )),
J j j j i i j i k k k k J
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describing statistical dependence of diseases with 
indexes  d, e… f  for population group with indexes a,  
b… c  in spatial units with indexes  s, u... z  from suspected 
driver with a confidence interval α, preliminary set. 
As a matter of fact, this task is usually done for each 
of disease i and for each of population group k (i.e. for 
one type of disease and for one population group in 
sets of spatial units). Ideally, fulfilling of mentioned 
generalized task will have intersection with task 
of finding of the best spatial scale.

5. Suggested method for selection of best scale 
of analysis for aggregated data in EE. Significant body 
of analysis methods are designed in environmental 
epidemiology to determine disease clusters and their 
impacting environmental drivers. Detection of Spatial 
Autocorrelation (SA) for neighboring areas, using 
of Moran I spatial statistics or Getis-Ord Gi statistics, 
spatial analysis learning machines etc. (see for example 
review of [4]). Such GIS based correlation studies 
can be complex and difficult to explain for public 
health and environmental managers. We advocate 
using of linear correlation analysis to determine 
possible spatial correlations between environmental 
drivers and disease characteristics. These correlations 
do not explain casual relationships, but rather 
give an information on strength and directions of 
relationships between environmental drivers and 
disease characteristics. In this approach the functional

, will be a maximum coefficient 

of correlation
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between environmental driver  for a set of 
spatial units Jg averaged over the time period [tyear1, 
tyear2] and disease characteristic  averaged 
over the time period  [tyear1, tyear2] for a set of spatial 
units Jg for set of population groups ih and for set of 
diseases kf. When analyzing a set of population groups 
(i.e. all population in groups with numbers ia, ib...ic), 
or/and a set of diseases (i.e. all population in groups 
with numbers kd, ke... kf) an average correlation for 
the sets should be estimated. This can be done by 
simple averaging, where average spatial correlation 
for the sets ih and kf , declared as the same sample, 

 is calculated as 
 – 

the sum of spatial correlations for each particular 
population group in the set ih and each particular 
disease in the set kf , divided by multiple of the 
total number of elements in the set of population 
groups n(ih) and in the set of diseases m(ke) . It was 
shown, however, that such a simple averaging of 
correlations potentially may result in a bias of the 
estimate of averaged correlation coefficient. Using 
recommendation of [5] we suggest using of alternate 
method of averaging, when each  is first converted 

to Fishers’ z: , then all transformed

 can be averaged and the result back-converted to

 It was demonstrated 

by [5] that z-transformation greatly reduces bias 
in averaging of correlations. The task of finding 
maximum spatial correlation between environmental 
driver and disease characteristics for all the 
spatial units would be equivalent to calculation of 

 for each possible 

set Jg of combinations of spatial units with further 
identification of a set providing maximum spatial correla- 
tion. Number of calculations for fixed sets of population 
groups ih and for set of diseases kf will be equal to Cl

3 + Cl
4 

+ … C l(l – 1) + C ll, where C n
m is a number of combinations 

of m – spatial units from l – total spatial units.

6. Suggested method for spatio-temporal pattern 
identification in EE. Spatio-temporal pattern analysis 

in EE is always based on time series analysis and 
forecasting. Time series analysis appeared almost 
hundred years ago as a branch of practical statistics, 
but developed particularly wide in the last thirty 
years [6]. Firstly, classical statistical models were 
developed. Subsequently, exponential smoothing 
techniques were suggested for refining time series 
analysis. Now days auto-regressive moving average 
models (ARIMA) are mostly applied. Some time 
series analysis approaches incorporate now Machine 
Learning.

We strongly advocate using of ARIMA models 
with combinatorial aggregations for identification 
of spatio-temporal patterns in EE. ARIMA models (h, 
d, q) for time series λ are combinations of a difference 
autoregressive model with a moving average model 
[6], which are expressed as:

∆dγ (t) = α0+ α1∆
dγ (t – 1) + α2∆

dγ  (t – 2) +...+
+ αh∆

dγ (t – h)  +  ∈(t) + θ1 ∈(t – 1) + 
+ θ2 ∈(t – 2) + ... +  θg∈(t – q),

where ∆dγ(t) is analyzed variable in time moment t, 
differenced d times, ∈(l) are normally distributed 
residuals in time moment l  , α1... αh are the coefficients 
of the autoregressive (AR) part of the model, θ1…
θq are the coefficients of the moving average (MA) 
part, and α0 is a constant. In an ARIMA (h, d, q) 
model the predictors (d differenced) are lagged 
h data points for the autoregressive part and q 
residuals are considered for the moving average  
part. When the task is to make an identification 
of spatio-temporal patterns reflecting relations 
of disease characteristics with a certain environmental 
driver one need to minimize influence of different 
regional co-factors of diseases by statistical analysis. We 
suggest to make a normalization to a maximum value 
in each of spatial units both for environmental driver

 and for disease characteristic

. Such a normalization 
allows comparison of amplitudes, trends, number 
of cycles and autoregressive features of time series 
within spatial units or within sets of several spatial 
units. Identification of spatio-temporal patterns in a 
set of several spatial units assumes that one should 
analyze time series for environmental driver and 
disease characteristics, representative for the set. These 
time series obtained by unification of time series for 
spatial units from the set, which can be calculated in 
two ways: 
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1) by simple averaging of time series for each year:

where дset is the time series, representing either 
environmental driver or disease characteristic for the 
entire set, nset is the number of spatial units in the set, 
дi is the time series in the spatial unit i; 

2) by averaging with weighting to population 
number in each spatial unit:

  , 
where р(t)i  is a population number and дi is either disease 
characteristic in spatial unit i, or environmental driver 
(if physical sense allows such averaging for the driver).  

Kruskal – Wallis test with an α = 0,05 [7] should be 
applied before unification of time series from different 
spatial units in order to see if samples presenting 
environmental driver and/or disease characteristics 
from one spatial unit dominate similar samples from 
another spatial unit (in this case samples are dependent 
and one from the tested spatial units should be taken 
out from further spatio-temporal analysis). The task 
of spatio-temporal pattern identification in EE, after 
defining of a rule for calculating of representative 
time series for environmental driver and disease 
characteristics for a set of aggregated spatial units, 
can be formulated as following: to find all statistically 
significant (usually with confidence interval α = 0,05 
or α = 0,1) correlations for all spatial units and all 
possible aggregations of the spatial units between 
environmental driver (normalized) and disease 
characteristics  (normalized) and identify spatial units 
in aggregations, which provide statistical associations, 
i.e. find all sets Jд with spatial units Js, Ju ... Jz, 
for which absolute value of correlation coefficient 
for a set of population groups (i.e. all population 
in groups with numbers ia, ib ... ic), or/and a set of 
diseases (i.e. all population in groups with numbers 
kd , ke ... kf) is larger than a fixed threshold rmin 
(usually > 0,5) with certain confidence α (0,05 or 0,1): 

 with   p-value < α. 
We suggest that one conduct the correlation 
analysis for all combinatorial aggregations of spatial 
units, which total number is equal to Cl

1 + Cl
2 + … 

Cl
(l – 1) + Cl

l, where Cn
m is a number of combinations 

of m – spatial units from l – total spatial units and with 
two ways of unification of the time series within the 
spatial units. We advocate using of ARIMA models 
for identification of spatio-temporal patterns of 

dependencies disease characteristics by environmental 
driver (i.e. sets of spatial units at a fixed time interval 
with significant statistically correlations). In this 
approach environmental driver in a set of spatial units 
is firstly approximated by ARIMA model, possibly 
with backwards time lags, depicting memory in 
diseases development. Disease characteristics in the 
set are also approximated by ARIMA and afterwards 
the predictor and the response variable are cross-
correlated. The Ljung-Box Q test [6] should be applied 
to the residuals in ARIMA models to ensure that the 
residuals series are white noise, which indicates the 
goodness of the resulting fit. Holm – Bonferroni 
method [8] with correcting (increasing) of p-value 
should be applied to control family-wise error of 
I type (accepting of false positive hypothesis on 
existing of significant correlation) during multiple 
calculations of ARIMA models. The final sets with 
found cross-correlations between ARIMA described 
environmental driver and disease characteristics are 
ranked by the value of cross-correlation coefficients in 
order to see spatio-temporal patterns with strongest 
relations between the predictor and response function.

7. Case study: Cancer incidence and number 
of fires in Far Eastern Federal District of Russia – 
spatio-temporal pattern identification. Identification 
of spatio-temporal patterns for statistical associations 
between number of fires (NF) as environmental driver 
and cancer incidence (CI) as disease characteristics 
using general approach, described above (see 5), 
was done for seven administrative units (AUs) of Far 
Eastern Federal District  (FEFD) of Russia (see [9]. We 
started our study knowing that temporal dynamics of 
cancer incidence was quite successfully described 
by ARIMA models in different countries like USA, 
Brazil, Switzerland [10] and relationship between 
cancer and wildfires was found in Canada [11]. In our 
study (see [9]) data on CI (persons with cancer for 
100 000 persons) for five major cancer types in seven 
listed AUs in two age groups (children and teenagers 
0–14 years and the entire population) for the 28-year 
period (1992–2019) were used. The algorithms 
of spatio-temporal patterns identification in our 
case study were realized in R language and using 
Excel (calculation files can be send by request) and 
both methods of unification of time series (simple 
averaging and averaging with weighting to population 
number) were applied. Approximately one fifth from 
all possible sets were found to have cross-correlations 
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between NF and CI. Three blood cancers (leukemia, 
non-Hodgkin lymphoma, and Hodgkin lymphoma) had 
the strongest statistical associations with wildfires [9].

8. Case study: Cancer incidence and number 
of fires in Far Eastern Federal District of Russia – 
selection of best scale of analysis for aggregated 
data. We made a spatial analysis of geographical 
coincidence between CI and NF for all sets of three to 

seven possible combinations of AUs of FEFD for the 
age population groups (children/teens 0–14 year and 
entire population) in order to find best scale of analysis 
of aggregated data. We found that distribution of 
maximum spatial correlation coefficient R2 (averaged 
for all five cancer types) over number of AUs 
in a combination set has two peaks (see Fig. 1) for 
both age population groups (children/teens 0–14 year 
and entire population).

The first peak is observed for combination from 
the three AUs Primorskij Kraj – Khabarovskij Kraj – 
Amurskaja Oblast’. Thus, the first possible best scale 
of analysis is sum of areas for these administrative 

Fig. 1. Maximum spatial correlation coefficient R2 (averaged for all five cancer types) over number of administrative units

units (over 1 314 000 km2, which is one fifth of the 
entire area). These three AUs have similar forest types 
(south taiga and temperate forests), which likely result 
in a similar smoke pollution (see Fig. 2a). 

Fig. 2. a) Three aggregated administrative units, providing best spatial correlation between cancer incidence and number of fires, 
are situated completely or partly to the south of border of southern taiga and temperate forest (white line) [12]; b) Five aggregated 
administrative units, providing second-best spatial correlation between cancer incidence and number of fires, are situated completely to 
the west of winter isobaric border 1016 millibar (white line), dividing territory with continental and marine climate [13]

Note. Far Eastern Federal District (FEFD) of Russian Federation in borders till the year 2018 (light grey) and administrative units 
used in the case study: 1 – Primorskij Kraj; 2 – Khabarovskij Kraj; 3 – Amurskaja Oblast; 4 – Kamchatskij Kraj; 5 – Magadan Oblast;  
6 – Sakhalin Oblast. Khabarovsk is the largest city of FEFD (1,6 million inhabitants) and capital of FEFD till the year 2018 (Map 
of Russian Federation till the year 2018)

a б
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Adding to this set Respublika Sakha (central 
and northern taiga) decrease maximum R2. Further 
addition of Magadan Oblast to the set Primorskij 
Kraj – Khabarovskij Kraj – Amurskaja Oblast’ – 
Respublika Sakha, provides the second peak for 
maximum R2 distribution at a five AUs set. Thus, the 
second possible best scale of analysis, which takes 
three fourths of the entire area (over 4 800 000 km2). 
Geographic area which includes Primorskij Kraj –
Khabarovskij Kraj – Amurskaja Oblast’ – Respublika 
Sakha – Magadan Oblast’ has continental climate 
with similar geostrophic pressure fields and 
prevailing winds in all seasons (see Fig. 2b), thus 
inducing homogeneity in distribution of smoke 
pollution. Addition to the area with homogeneous 
continental climate of AUs with maritime climate 
(Kamchatskij Kraj and/or Sakhalin oblast moves 
maximum R2 to low values. Maximum R2 for the 
age group “children/teens 0–14 years” was always 
smaller than maximum R2 for “entire population” 
at all sets of administrative unit combinations (from 
three to seven) (see Fig. 1).

9. Conclusion: What is learned from the case 
study for methodology? We saw that there were to best 
spatial scales for analysis of aggregated data. The first one 
took near 20 % of the entire area, but we found almost 
40 % of spatio-temporal statistical associations between 
environmental driver and disease characteristics here 
(11 from the total 29 statistical associations found by 
ARIMA modelling), The second spatial scale constitutes 
75 % of the entire area and got all the spatio-temporal 
statistical associations. Thus, we speculate that there 
is a trade-off in environmental epidemiology spatio-
temporal analysis between finding of maximum number 
of spatio-temporal patterns at the best scale and finding 
all the patterns at the second-best scale.

Our findings in spatial correlations analysis need 
an EE process-oriented exposure modelling proof. 
Indeed, maximum spatial correlation between CI and 
NF in aggregated set “Primorskij Kraj – Khabarovskij 
Kraj – Amurskaja Oblast” may be explained as by 
carcinogenic features of smoke from burned southern 
taiga and temperate forests, so by largest population 
density in the entire Federal District here.

The study was supported from the Russian State Assignment of the Federal Research Centre of the Southern 
Scientific Centre of the Russian Academy of Sciences (SSC RAS) (122013100131-9).
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Аннотация. Обнаружение пространственно-временных кластеров заболеваний и поиск их экологических 
причин, даже корреляционных, иногда требуют сложных статистических и ГИС-методов, что проявляется в по-
явлении новой отрасли экологической эпидемиологии, а именно: пространственно-временной экологической 
эпидемиологии. Двумя ключевыми проблемами пространственно-временной эпидемиологии являются: 1) выбор 
масштаба анализа агрегированных данных; 2) выбор метода выявления пространственно-временных закономер-
ностей.

Для определения возможных пространственных корреляций между всеми экологическими факторами и ха-
рактеристиками заболеваний и с целью решения проблемы 1 рекомендовано использовать линейный корреля-
ционный анализ и полный комбинаторный перебор. Для выявления пространственно-временных закономерно-
стей (решения проблемы 2) целесообразно использовать модели ARIMA с комбинаторными агрегациями.

Выявлены пространственно-временные закономерности статистических связей (проблема 2) между количе-
ством пожаров (NF) как экологическим фактором и заболеваемостью раком (CI) как характеристикой заболева-
ния с использованием модели ARIMA и определен наилучший масштаб анализа агрегированных данных (про-
блема 1). Исследование проводилось для семи административных единиц (АЕ) Дальневосточного федерального 
округа (ДВФО) России за 28-летний период (1992–2019 гг.).

Выявлено, что примерно одна пятая из всех возможных наборов АЕ–CI имеет взаимную корреляцию между 
NF и CI. Три вида рака крови (лейкемия, неходжкинская лимфома и лимфома Ходжкина) имели самую сильную 
статистическую связь с лесными пожарами. Обнаружено, что существуют два наилучших пространственных 
масштаба для анализа агрегированных данных: первый масштаб отражает тип доминантного леса (20 % террито-
рии ДВФО), а второй – тип доминантного климата (75 % территории ДВФО).

Ключевые слова: пространственно-временная экологическая эпидемиология, комбинаторный линейный 
корреляционный анализ, модели ARIMA, Дальний Восток России, пожары, рак.
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